Abstract

The spacing of the {2 2 0} lattice planes of a 28Si crystal, used to determine the Avogadro constant by counting silicon atoms, was measured by combined x-ray and optical interferometry to a relative accuracy of 3.5 × 10−9. The result is d2 2 0 = (192 014 712.67 ± 0.67) am, at 20.0 °C and 0 Pa. This value is greater by (1.9464 ± 0.0067) × 10−6d2 2 0 than the spacing in natural Si, a difference which confirms quantum-mechanics calculations. This result is a key step towards a realization of the mass unit based on a conventional value of the Planck or the Avogadro constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call