Abstract

The vapor pressures of the major congeners in commercial polychlorinated biphenyl (PCB) mixtures (Kanechlors; Kanebuchi Chemical Industry, Tokyo, Japan) have been experimentally determined by Knudsen mass loss effusion. We obtained vapor pressures for the individual PCBs in the crystalline solid, liquid, and subcooled liquid forms as a function of temperature. We derived the thermodynamic parameters, such as the enthalpies of sublimation and vaporization, from the temperature dependence of the vapor pressure by the Clausius-Clapeyron equation. To decide whether the commercial PCB mixtures were ideal solutions, we obtained the activity coefficients by comparing our experimental vapor pressures for pure PCB congeners with those calculated from Kanechlor molar compositional data and vapor pressure values. In many cases, we found that, at 298 K, the values of the activity coefficients of major PCBs in Kanechlor 300 and 500 ranged from 1 to 2. Thus, we suggested that the commercial PCB mixtures show slight positive deviations from ideal solution (Raoult's Law) behavior at ambient temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.