Abstract

T(1) and T(2) were measured for white matter (WM) and gray matter (GM) in the human cervical spinal cord at 3T. T(1) values were calculated using an inversion-recovery (IR) and B(1)-corrected double flip angle gradient echo (GRE) and show significant differences (p = 0.002) between WM (IR = 876 +/- 27 ms, GRE = 838 +/- 54 ms) and GM (IR = 973 +/- 33 ms, GRE = 994 +/- 54 ms). IR showed significant difference between lateral and dorsal column WM (863 +/- 23 ms and 899 +/- 18 ms, respectively, p = 0.01) but GRE did not (p = 0.40). There was no significant difference (p = 0.31) in T(2) between WM (73 +/- 6 ms) and GM (76 +/- 3 ms) or between lateral and dorsal columns (lateral: 73 +/- 6 ms, dorsal: 72 +/- 7 ms, p = 0.59). WM relaxation times were similar to brain structures with very dense fiber packing (e.g., corpus callosum), while GM values resembled deep GM in brain. Optimized sequence parameters for maximal contrast between WM and GM, and between WM and cerebrospinal fluid (CSF) were derived. Since the spinal cord has rostral-caudal symmetry, we expect these findings to be applicable to the whole cord.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.