Abstract

Skin lesions change elastic properties near the surface. In the last decades, several non-invasive elastography techniques have been developed for detecting the mechanical properties of tissue. In particular, harmonic elastography is characterized for inducing shear wave propagation by an external vibrator in order to estimate shear modulus. However, near the boundary region, propagation is governed by surface acoustic waves (SAW). This paper combines crawling waves elastography with a high-frequency ultrasound (HFUS) system for the estimation of the SAW-to-shear compensation factor when ultrasound (US) gel is used as coupling interface. Experiments explore the SAWspeed in a homogeneous phantom with a solid-water interface in order to corroborate theoretical findings. Subsequently, experiments in a solid-US gel interface are conducted in order to find the correct compensation factor. Preliminary results suggest that SAW propagation can be detected using HFUS, and shear velocity maps can be generated by applying the estimated empirical correction factor. This study will potentially avoid the underestimation of shear modulus when using SAW-based HFUS elastography which is promising for the better diagnosis of skin diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call