Abstract

We report the first anisotropy decays of protein fluorescence obtained using a frequency-domain fluorometer. The ultraviolet light source (300 nm) was a ring dye laser equipped with an intracavity frequency doubler, pumped by an argon ion laser. The data, measured at modulation frequencies from 2 to 200 MHz, reveal the presence of subnanosecond motions (0.1-0.2 ns) of the single tryptophan residues in melittin and monellin. For melittin the data also indicate the presence of slower motions near 1 ns, which may be the result of concerted motions of several peptide units. Smaller amplitude motions, on a similar timescale, were observed for the single tryptophan residue in staphylococcal nuclease. We demonstrate using N-acetyl-L-tryptophanamide in water that the method of frequency-domain fluorometry is capable of measuring correlation times as short as 50 ps. This method can provide data for the direct comparison of measured anisotropy decays with those predicted from molecular dynamics calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call