Abstract
The redefinition of the kilogram within the International system of units provides a direct link between mass and Planck’s constant. With this in place, it becomes possible to realize the kilogram using electrical metrology. We describe a method that scales this mass measurement approach to the submilligram level using an electrostatic force balance (EFB). Through traceable determination of capacitance, voltage, and position within the balance, the mass values of submilligram artifacts are determined. An uncertainty analysis is carried out on these measurements. Results show a substantial reduction in uncertainty relative to those currently available through conventional approaches based on kilogram subdivision for true mass. Since the EFB measurements are carried out in a vacuum, conversion to conventional mass requires an air buoyancy correction at the location of use. Despite additional uncertainty added by buoyancy correction, the use of the EFB method decreases uncertainty in submilligram mass measurement by an order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.