Abstract

The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability, and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as hyperelastic warping for the measurement of local strains in the left ventricle from clinical cine-magnetic resonance imaging (MRI) image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastolic cine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from hyperelastic warping showed good agreement with those of the forward solution (R2=0.67 stretch, R2=0.76 circumferential strain, R2=0.75 radial strain, and R2=0.70 in-plane shear). The technique had low sensitivity to changes in material parameters (deltaR2= -0.023 fiber stretch, deltaR2=-0.020 circumferential strain, deltaR2=-0.005 radial strain, and deltaR2=0.0125 shear strain with little or no change in rms error), with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to a signal-to-noise ratio (SNR) of 4.0 (deltaR2= -0.032 fiber stretch, deltaR2=-0.023 circumferential strain, deltaR2=-0.04 radial strain, and deltaAR2=0.0211 shear strain with little or no increase in rms error). This study demonstrates that warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call