Abstract

AbstractSputter‐depth profiles of model organic thin films on silicon using C60 primary ions have been employed to measure sputtering yields and depth resolution parameters. We demonstrate that some materials (polylactide, Irganox 1010) have a constant and high sputtering yield, which varies linearly with the primary ion energy, whereas another material (Alq3) has lower, fluence‐dependent sputtering yields. Analysis of multi‐layered organic thin films reveals that the depth resolution is a function of both primary ion energy and depth, and the sputtering yield depends on the history of sputtering. We also show that ∼30% of repeat units are damaged in the steady‐state regime during polylactide sputtering. Crown Copyright © 2006. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.