Abstract

The spatial distributions of electron temperature and density in a dc glow discharge that is created by a pair of planar electrodes were obtained by using double Langmuir probes. The contribution of double Langmuir probes measurement is to provide a relatively quantitative tool to identify the electron distribution behavior. Electrons gain energy from the imposed electric field, and electron temperature (Te) rises very sharply from the cathode to the leading edge of the negative glow where Te reaches the maximum. In this region, the number of electrons (Ne) is relatively small and does not increase much. The accelerated electrons lose energy by ionizing gas atoms, and Te decreases rapidly from the trailing edge of the negative glow and extends to the anode. Ne was observed to increase from the cathode to the anode, which is due to the electron impact ionization and electron movement. The electron density was observed to increase with increasing discharge voltage while the electron temperature remained approximately. At 800 V and 50 mTorr argon glow discharge, Te ranged from 15 to 52 eV and Ne ranged from 6.3×106/cm3 to 3.1×108/cm3 in the DC glow discharge, and Te and Ne were dependent on the axial position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.