Abstract

Reverberation chamber measurements typically rely upon spatially averaged squared pressure for the calculation of sound absorption, sound power, and other acoustic values. While a reverberation chamber can provide an approximately diffuse sound field, variations in sound pressure consistently produce uncertainty in measurement results. This paper explores the benefits of using total energy density or squared particle velocity magnitude (kinetic energy density) instead of squared pressure (potential energy density) for sound absorption and sound power measurements. The approaches are based on methods outlined in current ISO standards. The standards require a sufficient number of source-receiver locations to obtain suitable measurement results. The total and kinetic energy densities exhibit greater spatial uniformity at most frequencies than potential energy density, thus requiring fewer source-receiver positions to produce effective results. Because the total energy density is typically the most uniform of the three quantities at low frequencies, its use could also impact the usable low-frequency ranges of reverberation chambers. In order to employ total and kinetic energy densities for sound absorption measurements, relevant energy-based impulse responses were developed as part of the work for the assessment of sound field decays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call