Abstract

The surface of the skin is covered by intersecting grooves and ridges which produce characteristic skin surface patterns. It has been suggested that these folds provide a reserve of tissue, allowing the skin to stretch during normal muscle movements. More so, skin is anisotropic and under constant tension. Therefore, to characterize skin displacement following stretch, a discrete, description of the in-plane skin displacement during stretch is of interest. We introduce the use of digital image speckle correlation (DISC), a non-contact technique, to map, in two dimensions, the surface deformation patterns resulting from skin stretching. We analyze skin stretch under the mechanical action of a film former applied on a defined square surface on the back of the hand. This is achieved by taking a series of images, during the drying process of the film former. The images are then analyzed with DISC to create vector diagram and projection maps, from which we can obtain spatially resolved information regarding the skin displacement. We first show that DISC can provide spatially resolved information at any time point during the drying process: areas of de-wetting, wetting were identified using projection maps; we then extracted the value of the drying time. Finally using a vector map, we show the orientation of the skin displacement during stretching and calculated the magnitude of the total stretch. We have shown previously that DISC can be used to determine skin mechanical properties and muscular activity. We show here that DISC, as a non-contact technique, can map, in two dimensions, the surface deformation patterns of a polymer solution on a substrate at any time point during the drying process. DISC analysis generates for each speckle of the sample analyzed, the orientation and magnitude of displacement of the polymer solution. DISC can map in two dimensions the deformation undergone by the substrate and skin stretch is measured in this particular case. We therefore show that the DISC method, as a non-contact technique has great potential for characterization of film formation and is a potential clinical research tool for the measurement of epidermis stretch and epidermis properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call