Abstract
Acetaminophen toxicity is the most common cause of acute liver failure (ALF) in the United States and Great Britain, but may be underrecognized in certain settings. Acetaminophen-protein adducts are specific biomarkers of drug-related toxicity in animal models and can be measured in tissue or blood samples. Measurement of serum adducts might improve diagnostic accuracy in acute liver failure (ALF) patients. We measured serum acetaminophen-protein adducts using high-pressure liquid chromatography with electrochemical detection in coded sera of 66 patients with ALF collected prospectively at 24 US tertiary referral centers. Samples were included from 20 patients with well-characterized acetaminophen-related acute liver failure, 10 patients with ALF owing to other well-defined causes, 36 patients with ALF of indeterminate etiology, and 15 additional patients without ALF but with known acetaminophen overdose and minimal or no biochemical liver injury. Acetaminophen-protein adducts were detected in serum in 100% of known acetaminophen ALF patients and in none of the ALF patients with other defined causes, yielding a sensitivity and specificity of 100%. In daily serial samples, serum adducts decreased in parallel with aminotransferase levels. Seven of 36 (19%) indeterminate cases demonstrated adducts in serum suggesting that acetaminophen toxicity caused or contributed to ALF in these patients. Low adduct levels were present in 2 of 15 patients with acetaminophen overdose without significant liver injury. Measurement of serum acetaminophen-protein adducts reliably identified acetaminophen toxicity, and may be a useful diagnostic test for cases lacking historical data or other clinical information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.