Abstract

A method of sampling jitter measurement based on time-domain analytic signals is proposed. Computer simulations and actual measurements were performed to compare the proposed method with the conventional method, in which jitter is evaluated from the amplitudes of sideband spectra for observed signals in the frequency domain. The results show that the proposed method is effective in that it 1) provides high temporal resolution as a result of the direct derivation of the jitter waveform, 2) achieves higher accuracy in the measurement of jitter amplitude, and 3) can separate phase modulation that originate in sampling jitter from amplitude modulation that originate in digital-to-analog and analog-to-digital conversion processes. Suitable measurement conditions and measurements to separate the effects of jitter in a digital-to-analog converter and an analog-to-digital converter are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.