Abstract

To explore dynamical processes in granular matter, we use a combination of 3D imaging and mechanical testing. We analyze structural changes using confocal microscopy while applying a compression load simultaneously. Fluorescently labeled polydisperse silica particles were hydrophobized with long alkyl chains and dispersed in an index-matching liquid. The particles show a weak attraction. Photobleaching the central plane of individual particles generates an optical anisotropy without changing particle interaction. In a series of 3D images, we follow trajectories and rotation of single particles. We focus on particle translation and rotation in dependency of the local volume fraction. During compression, restructuring happens predominantly in regions of low packing density. We show that rotation plays an important role and is hence a key parameter for explaining dynamical processes in granular systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.