Abstract

Objective The aim of this study was to investigate normal values for the dynamic compliance of the respiratory system (Crs) and respiratory system resistance (Rrs) in mechanically ventilated anaesthetized dogs. Study design Prospective clinical study. Animals Forty healthy dogs undergoing elective orthopaedic surgery. Body weight was (mean ± SD) 26.8 ± 10.7 kg (range: 1.9–45.0 kg), age 4.7 ± 2.9 years (range: 0.1–10.6 years). Methods Dogs were premedicated with acepromazine and methadone administered intramuscularly and anaesthesia induced with propofol intravenously. After endotracheal intubation the dog's lungs were connected to an appropriate breathing system depending on body weight and isoflurane in oxygen administered for maintenance of anaesthesia. The lungs were ventilated mechanically with variables set to maintain normocapnia (end‐tidal carbon dioxide concentration 4.7–6.0 kPa). Peak inspiratory pressure, Crs, Rrs, tidal volume, respiratory rate and positive end‐expiratory pressure were recorded at 5, 30, 60, 90 and 120 minutes after start of mechanical ventilation. Cardiovascular variables were recorded at time of collection of respiratory data. Results General additive modeling revealed the following relationships: Crs = [0.895 × body weight (kg)] + 8.845 and Rrs = [−0.0966 × body weight (kg)] + 6.965. Body weight and endotracheal tube diameter were associated with Crs (p < 0.001 and p = 0.002 respectively) and Rrs (p = 0.017 and p = 0.002 respectively), body weight being linearly related to Crs and inversely to Rrs. Conclusion and clinical relevance Body weight was linearly related to Crs while Rrs has an inverse linear relationship with body weight in mechanically ventilated dogs. The derived values of Crs and Rrs may be used for monitoring of lung function and ventilation in healthy dogs under anaesthesia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.