Abstract

Long-term memory requires stable protein synthesis and is altered in Alzheimer’s disease (AD). This study aimed to implement a method to measure the cerebral protein synthesis rate (PSR) with [11C]leucine PET in vivo in rats and evaluate potential PSR alterations longitudinally (6, 12 and 18 months old) in the TgF344-AD rat model of AD. Wistar, wild-type (WT) and TgF344-AD rats (TG) were scanned for 60 min with [11C]leucine. Arterial blood activity was monitored online and with discrete whole blood and plasma samples by γ-counting in Wistar rats, WT (n = 4) and TG (n = 5). Unlabelled amino acids were measured in plasma. The sensitivity of [11C]leucine PET to measure alterations in PSR was assessed in Wistar rats by injection of PSR inhibitor anisomycin before PET acquisition. Anisomycin administration significantly reduced the net uptake rate constant (Kcplx) of [11C]leucine and PSR, proving the suitability of the method. For the longitudinal study, averaged population-based input functions were used to calculate PSR. We found a significant genotype effect on PSR (decrease in TG vs WT) only in the globus pallidus. This study suggests that [11C]leucine PET is sensitive enough to measure brain PSR in rat but that cross-sectional design with individual input function should be preferred.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call