Abstract

The flooding dose method continues to be useful in measuring protein fractional synthetic rate (FSR) in a tissue. However, flooding of free amino acid pools eliminates enrichment difference between plasma and tissue free amino acid pools, which makes it impossible to concomitantly measure protein fractional breakdown rate (FBR). We hypothesized that a subflooding dose of an amino acid reduces the enrichment difference between plasma and tissue free amino acid pool to a minimal measurable level, thus allowing concomitant measurement of protein FSR and FBR. Phenylalanine (40% enriched) at 50 mg/kg was intravenously injected as a bolus in 6 anesthetized rabbits. Arterial blood and chest skin samples were taken before the injection and for 120 minutes after the injection. Fractional breakdown rate of skin protein calculated from 15-60-120–minute sampling times was 11.3%/d ± 2.0%/d, which was close (P = .66) to the corresponding FSR of 10.0%/d ± 2.3%/d. The subflooding dose injection did not disturb the FBR approach because modifications on the FBR equation to account for the changes of plasma phenylalanine concentration resulted in the same value (11.5%/d ± 1.4%/d). The FBR was positively correlated with the FSR (r = 0.80, P < .05). These findings indicate maintenance of protein mass in the skin, which is a metabolic characteristic of the skin. This subflooding dose method provides a methodological choice to concomitantly measure both FSR and FBR in a tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.