Abstract

All sensory cortical areas, including the auditory cortex, are considered to be wired according to the same general laminar structure schema, commonly referred to as the canonical model of cortical circuitry. The auditory cortex in vivo, however, is functionally anisotropic; the functional organization along the tonotopic axis is qualitatively different from that orthogonal to this axis. In the current study, we examined whether the functional anisotropy of the auditory cortex observed in vivo is reflected in propagation activity driven by electric stimulation in the local microcircuitry in vitro. Using in vitro preparations of coronal and angled horizontal brain slices, we directly investigated their isotropic versus anisotropic properties using microstimulation and multi‐site recording with a multielectrode array substrate. Our results clearly demonstrated the isotropic properties of the circuits in slice preparations of the auditory cortex. Additionally, we found that driven by stimulation current in layer 4, the horizontal velocity of activity propagation in layer 2/3 was faster than the vertical velocity from layer 4 to layer 2/3 and the horizontal velocity in layer 4. On the basis of these results, we discuss the local network and its possible functions in the auditory cortex. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.