Abstract

For the first time, the pre-sheath ion flow velocity has been measured using the Doppler shift of laser-induced fluorescence in singly-ionized argon ions. The velocity shows a monotonic increase, from a value of about 0.15 of the sound speed V S far from the target to 0.5 of V s at a distance of 5 mm from the surface. The temperature, the floating potential and the density are calculated from cylindrical probe measurements taken in the same region under identical conditions. These experimental results are compared with those from a 1D isothermal single-ion fluid model of the pre-sheath and a kinetic electron/fluid ion model. Both models agree well with the density profile, but underestimate the potential change and overestimate the velocity. In addition, the bulk flow velocity has been independently determined from “Mach probe” measurements, using various candidate theories to relate the Mach number to the ratio of the upstream to downstream saturation currents. Comparison with the optical measurements indicate that the probe models which include viscosity provide reasonable agreement with our Mach probe data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.