Abstract

Monodisperse polystyrene nanospheres with a mean diameter of 102 nm are photofragmented with 193 nm light in N2 at laser fluences from 1 to 20 J/cm2. Carbon atom fluorescence at 248 nm from the disintegration of the particles is used as a signature of the polystyrene. The normalized fluorescence signals are self-similar with an exponential decay lifetime of approximately 10 ns. At fluences above 17 J/cm2, optical breakdown occurs and a strong continuum emission is generated that lasts significantly longer. A non-dimensional parameter, the photon-to-atom ratio (PAR), is used to interpret the laser-particle interaction energetics. Carbon fluorescence from polystyrene particles is compared with that from soot, and a similarity between the two particles is observed when normalized with PAR. Carbon emission from bulk polystyrene was also measured. Similar emission signals were observed, but the breakdown threshold of the surface is significantly lower at 0.2 J/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call