Abstract

The dispersion of photonic modes in one-dimensional (1-D) and two-dimensional (2-D) patterned silicon-on-insulator (SOI) waveguides, also containing line defects, is fully investigated both above and below the light line. Quasi-guided (radiative), as well as truly guided modes are probed by means of angle- and polarization-resolved microreflectance and attenuated total reflectance measurements. For the 1-D case, the sharp resonances observed in reflectance spectra are analyzed in terms of the Airy-Fano model, and the measured linewidths are shown to be very close to theoretical predictions. In the 2-D lattices containing W1 line defects the presence of a supercell repetition leads to the simultaneous excitation of defect and bulk modes which are folded in a reduced Brillouin zone. The measured dispersion is in very good agreement with full three-dimensional calculations based on expansion on the waveguide modes, indicating that a deep understanding of the propagation properties of patterned SOI waveguides is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call