Abstract

We report the measurement of photoexcitation cross-sections of three first-step uranium transitions (0 → 16900.38 cm −1, 0 → 17361.89 cm −1 and 620 → 17361.89 cm −1) using saturation method. These measurements were performed on a resonance ionization mass spectrometry (RIMS) set-up consisting of Nd:YAG-pumped dye lasers, a reflectron time-of-flight mass spectrometer and high-temperature atomic vapour source. The uranium vapours were excited and photoionized by two-colour, three-photon photoionization scheme using Nd:YAG-pumped dye laser system. The resultant photoion signal was monitored as a function of dye laser fluence used for first step excitation to measure the excitation cross-section values. A new approach was adopted to overcome the large uncertainties associated with such measurements. With this approach the cross-section of transitions whose value is already reported in the literature was measured as a bench mark. By normalizing the measured value to the reported value, a scaling factor was derived. This scaling factor was used to scale up the cross-section values of other transitions measured by this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.