Abstract

In this study parallel blade–vortex interaction for a Schmidt-propeller configuration has been examined using particle image velocimetry (PIV). This tandem configuration consists of a leading airfoil (forefoil), used to generate a vortical wake of leading-edge vortices (LEVs) and trailing-edge vortices (TEVs) through a pitching or plunging motion, and a trailing airfoil (hindfoil), held fixed with a specified angle of attack and vertical spacing in its wake. The hindfoil incidence (loading) and not the vertical spacing to the incoming vortical wake has been found to dictate the nature of the interaction (inviscid vs. viscous). For cases where the vortex–blade offset is small and the hindfoil is loaded, vortex distortion and vortex-induced separations are observed. By tracking the circulation of the LEV and TEV, it has been found that the vortices are strengthened for the tandem arrangement and in certain cases dissipate quicker in the wake when interacting with the hindfoil. Time-averaged forces obtained using a standard control-volume analysis are then obtained and used to evaluate these vortex-interaction cases. A subsequent analysis of the varying pressure distribution over the suction side of the hindfoil is performed by integrating the Navier–Stokes equations through the velocity field. This allows for a direct comparison of the vortex-induced loading for the various configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.