Abstract
We have developed a noninvasive EPR (electron paramagnetic resonance) oximetry, based on a new class of oxygen-sensing nano-particulate probe (LiNc-BuO), for simultaneous monitoring of stem-cell therapy and in situ oxygenation (partial pressure of oxygen, pO2) in a mouse model of acute myocardial infarction (AMI). AMI was induced by a permanent occlusion of left-anterior-descending (LAD) coronary artery. Skeletal myoblast (SM) cells were used for therapy. The oximetry probe was implanted in the mid-ventricular region using a needle. Tissue histological studies after 3 weeks of implantation of the probe revealed significant fibrosis, which was solely due to the needle track and not due to the probe particles. The feasibility of long-term monitoring of pO2 was established in control (non-infarct) group of hearts (> 3 months; pO2 = 15.0 +/- 1.2 mmHg,). A mixture of the probe with/without SM cells (1 x 10(5)) was implanted as a single injection in the infarcted region and the myocardial tissue pO2 at the site of cell therapy was measured for 4 weeks. The pO2 was significantly higher in infarcted hearts treated with SM cells (pO2 = 3.5 +/- 0.9 mmHg) compared to untreated hearts (pO2 = 1.6 +/- 0.7 mmHg). We have demonstrated, for the first time, the feasibility of monitoring pO2 in mouse hearts after stem cell therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.