Abstract

Bone tissue adapts to its mechanical loading environment. We review here the accelerometric measurements with special emphasis on osteogenic exercise. The accelerometric method offers a unique opportunity to assess the intensity of mechanical loadings. We present methods to interpret accelerometric data, reducing it to the daily distributions of magnitude, slope, area, and energy of signal. These features represent the intensity level of physical activities, and were associated with the changes in bone density, bone geometry, physical performance, and metabolism in healthy premenopausal women. Bone adaptations presented a dose- and intensity dependent relationship with impact loading. Changes in hip were threshold dependent, indicating the importance of high-impacts exceeding acceleration of 4 g or slope of 100 g/s as an osteogenic stimulus. The number of impacts needed was 60/day. We also present the daily impact score to describe the osteogenic potential of daily mechanical loading with a single score. The methodology presented here can be used to study musculoskeletal adaptation to exercise in other target groups as well.

Highlights

  • Bone is dynamic tissue that is able to adapt its structure and strength to mechanical loading environment

  • Exercises including high-impact loading have been shown to be beneficial for bones, and high-impact activities are most effective in improving femoral neck bone mineral density (BMD) at the hip (Wolff et al, 1999; Wallace and Cumming, 2000), a common site of osteoporotic fracture

  • Our study demonstrated that 12 months of regular impact exercise favored bone formation, increased BMD in weight-bearing bones, especially at the hip, and led to geometric adaptations by increasing periosteal circumference of the femur (Vainionpää et al, 2005, 2006, 2007a)

Read more

Summary

Introduction

Bone is dynamic tissue that is able to adapt its structure and strength to mechanical loading environment. We present methods to interpret accelerometric data, reducing it to the daily distributions of magnitude, slope, area, and energy of signal.These features represent the intensity level of physical activities, and were associated with the changes in bone density, bone geometry, physical performance, and metabolism in healthy premenopausal women. Bone adaptations presented a dose- and intensity dependent relationship with impact loading.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.