Abstract

The conventional radar technology is based on linear detection—i.e., the same transmit and receive frequencies are used. However, with linear radars, difficulties arise when detecting electronic objects with relatively small radar cross section (RCS). To overcome these limitations, a nonlinear radar that can detect nonlinear responses (i.e., harmonic and intermodulation) scattered by electronic devices due to nonlinear interaction can be utilized. Nonlinear radars require a different analysis from linear radars for analyzing RCS. In this paper, we present an experimental analysis of the nonlinear RCS of various electronic devices. Unlike linear radars, RCS in nonlinear radars is determined by the amount of nonlinear responses backscattered to the radar. Therefore, we derive a radar equation accustomed to harmonic radars that consists of nonlinear RCS. We then obtain and analyze the nonlinear RCS of various targets from the measured harmonic responses of the targets based on the nonlinear radar equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call