Abstract

We have determined nonisothermal diffusive transport coefficients of a succinonitrile-(d)camphor mixture with a composition of c = 0.239 wt.-frac. (d)camphor at a temperature of 318.2 K, which is close to the eutectic point. The employed experimental techniques are optical beam deflection in a Soret cell and photon correlation spectroscopy. The diffusion coefficient is D = (1.43 ± 0.04) × 10-10 m2 s-1, the thermodiffusion coefficient is DT = (2.00 ± 0.06) × 10-12 m2 s-1 K-1, and the Soret coefficient is ST = (1.40 ± 0.02) × 10-2 K-1. Camphor migrates toward the lower and succinonitrile migrates toward the higher temperatures. While the diffusion coefficient is in good agreement with the literature, the Soret coefficient has been determined for the first time. Our analysis shows that a significant concentration shift can be established in the liquid mixture in the presence of a temperature gradient. The mixture has a negative separation ratio, which leads to convective instabilities if heated from above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.