Abstract
Neutron spectra below 10 keV in an iron shield assembly bombarded by deuterium-tritium neutrons are measured with accuracy between 5 to 13% by adopting the slowing-down time method. The measurement supplemented previous spectrum measurements for higher energies so that the neutron spectrum in the whole energy range from 14 MeV down to 0.3 eV is now available. Benchmark tests of iron data in JENDL-3.1, JENDL-3.2, JENDL fusion file, and FENDL/E-1.0 were carried out in the whole energy range with experimental uncertainty at ∼10% by utilizing the present and previous experiments. As a result, it was found that cross-section data in the newer versions of JENDL were improved in terms of agreement with the experiment. Calculation with JENDL fusion file and FENDL/E-1.0 could predict neutron fluxes in the whole energy range within 20 and 15%, respectively. Possible over- and underestimations for nonelastic and elastic cross sections, respectively, at 14 MeV in all JENDLs were pointed out. It was confirmed that low-energy neutron fluxes were very sensitive to Q values for discrete inelastic cross sections of natural iron and 57Fe(n,n’1,) reaction, which were not adequately treated in JENDL-3.1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.