Abstract

An intense semimonoenergetic neutron field was made using a simple beryllium target system bombarded by protons of nine different energies between 20 and 40 MeV. Natural sodium, aluminum, vanadium, chromium, manganese, copper, zinc, and gold samples were irradiated at this field, and gamma rays from the samples were observed by a germanium detector. The production rates of 17 radionuclides were obtained for the nine different neutron fields, and the excitation functions of these 17 reaction channels of 23Na(n,2n)22Na, 27Al(n, α)24Na, 51V(n, α)48Sc, 51V(n,p)51Ti, 50Cr(n,3n)48Cr, 50Cr(n,2n)49Cr, 55Mn(n,4n)51Ti, 55Mn(n,4n)52Mn, 55Mn(n,2n)54Mn, 63Cu(n,3n) Cu, 63Cu(n,2n)62Cu, 65Cu(n,p)65Ni, 64Zn(n,t)62 Cu, 64Zn(n,3n)62Zn, 64Zn(n,2n)63Zn, 197Au(n,4n)194Au, and 197Au(n,2n)196Au were obtained for neutron energies up to 40 MeV by using the SAND-II and the NEUPAC unfolding codes and also least-squares fitting. The initial guess value for these methods was obtained primarily from calculations of the ALICE/LIVERMORE82 code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call