Abstract

Air–sea interactions within the ocean’s near-surface layer play a pivotal role in climate regulation and are essential for understanding the dispersion of marine pollutants such as microplastics and oil slicks. Despite its significance, high-resolution data exploring the physical dynamics near the air–sea interface are noticeably sparse. To address this, we introduced a novel Lagrangian observational platform, outfitted with an upward-facing high-resolution ADCP, designed to measure current shear within the top 2 m of the surface water. Through two short field experiments, we identified enhanced currents and shear in the near-surface layer, and observed a negative vertical momentum flux aligned with the wind direction and a positive one orthogonal to it. The measurement suggest that Stokes drift contributes to 10% of horizontal mass transport and 20% of shear in the top surface layer, with the direct and local wind-driven current being the predominant influence. To accurately model the physical behavior of buoyant microplastics, this observation underscores the necessity of parameterizations that account for both the Stokes drift and the direct, local wind-driven current, a factor that is often overlooked in many models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call