Abstract

New concepts in nuclear reactor technology require precise neutron reaction data in the intermediate and high energy range. At present, experimental and evaluated nuclear data, particularly for (n, xn) reactions, are very scarce. Moreover, real discrepancies exist between different databases. The lack of experimental data is essentially due to the difficulty of measuring (n, xn) reactions. No universal method applicable to all isotopes exists. One of the possible methods is the in-beam y-ray spectroscopy and neutron time of flight technique on white neutron beams. In this way one actually directly measures (n, xny) reaction cross-sections. These serve as a starting point in the subsequent derivation of (n, xn) reaction cross-sections using nuclear models. This method was applied with a natural lead sample at me GELLNA white neutron beam facility in Geel, Belgium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.