Abstract

Rates of myo-inositol (Ins) incorporation and turnover in phosphatidylinositol (PtdIns) were determined in cultured mouse cortical neurons. Cells were incubated with deuterium-labeled myo-inositol (Ins) in culture medium free of unlabeled Ins. The time-dependent changes in the specific activity of cytosolic Ins and membrane PtdIns were measured by mass spectrometry. PtdIns turnover was modeled incorporating values for Ins flux, cytosolic dilution, PtdIns concentration, and rate of incorporation into PtdIns. Recycled Ins diluted the labeled precursor pool, and a time course was obtained for this cytosolic process. The specific activity of the precursor pool at the plateau of the time-course curve was 0.43 +/- 0.04 (mean +/- SD). The incorporation of the tracer into PtdIns was linear between 4 and 10 h incubation of the neurons. After factoring in the extent of dilution of the tracer in the precursor pool, the rate of Ins incorporation into PtdIns was found to be 315 +/- 51 nmol (g of protein)(-1) x h(-1). The half-life of Ins in PtdIns was calculated for each point on the linear incorporation curve and then corrected for the tracer reincorporation. The half-life of Ins in PtdIns was 6.7 +/- 0.2 h, which translates into a basal turnover rate of 10.3%/h in this in vitro system. The mathematical model and the stable isotope method described here should allow assessment of the dynamics of PtdIns signaling altered in certain diseases or by agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call