Abstract
The performance, safety, and reliability of electrochemical energy storage and conversion systems based on Li-ion cells depend critically on the nature of heat transfer in Li-ion cells, which occurs over multiple length scales, ranging from thin material layers all the way to large battery packs. Thermal phenomena in Li-ion cells are also closely coupled with other transport phenomena such as ionic and charge transport, making this a challenging, multidisciplinary problem. This review paper presents a critical analysis of recent research literature related to experimental measurement of multiscale thermal transport in Li-ion cells. Recent research on several topics related to thermal transport is summarized, including temperature and thermal property measurements, heat generation measurements, thermal management, and thermal runaway measurements on Li-ion materials, cells, and battery packs. Key measurement techniques and challenges in each of these fields are discussed. Critical directions for future research in these fields are identified.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrochemical Energy Conversion and Storage
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.