Abstract
The trajectory of the virtual mass centers of sequentially departing gas bubbles in water flow has been analyzed in this study. The bubbles were generated from a brass nozzle of 1 mm inner diameter in a glass tank (300 × 150 × 500 mm3), filled with distilled water maintained at 21 ± 1 °C. A three-mirror system was used to obtain two frames of the workspace in a single shot of a Phantom v1610 high-speed camera. A three-dimensional computer reconstruction algorithm was developed, which consisted of a blur filter, canny edge filter, region of interest (ROI), and Kalman filter. This algorithm was used to obtain the coordinates of the center of mass of each individual gas bubble. We analyzed the bubble trajectories obtained for three different air volumetric flow rates. A multifractal analysis was used to evaluate the gas bubble dynamics. The wavelet transform modulus maxima method was used to obtain the singularity spectra of the bubble paths. The local Hölder exponent value proved that the gas bubble motion trajectories tended to behave in a deterministic and chaotic manner. In addition, the sensitivity of the chaotic bubble paths to small- and large-scale fluctuations of the lateral bubble displacement was investigated. In conclusion, the proposed approach allows us to distinguish between deterministic chaotic dynamics and the stochastic evolution of bubble paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.