Abstract

We apply high-order harmonic generation to sensitive measurements of the molecular rotational temperature in a thin supersonic gas beam. The method uses nonresonant pump and probe femtosecond laser pulses to generate harmonic radiation from coherently rotating molecules. The rotational temperature of molecules can be derived accurately with high spatial and temporal resolutions from the Fourier spectrum of time-dependent signals. The validity of this method was tested for an expanding flow of an N(2) beam with a rapid temperature decrease. The results show the versatile applicability of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.