Abstract

Fluidized bed dryers have been widely applied to dry raw materials or final products due to the advantages of good mixing efficiency and high heat and mass transfer rate. In order to control and optimize the drying process of fluidized bed dryers, it is necessary to develop reliable methods to measure the moisture content of solid particles in the bed. Because of the advantages of non-intrusiveness, simple structure and high sensitivity, an electrostatic sensor array has been developed to monitor the drying process. Experimental investigations were conducted on a lab-scale fluidized bed dryer. The moisture content during the drying process was measured using the sampled particles as reference. It is found that the fluctuation of the electrostatic signals can reflect the change in moisture content. However, the relationship between the fluctuation of the electrostatic signal and the moisture content depends on the air velocity in the dryer. To eliminate the velocity effect on moisture content measurement, a model between the moisture content and the root-mean-square magnitude of the electrostatic signal is established. The effectiveness of the model is validated using experimental results under a range of conditions. The findings indicate that the electrostatic sensor array can measure the moisture content in the bed with a maximum error of ±15%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call