Abstract

Graphite fiber-reinforced resin composite materials have a wide use in aerospace, automotive and sporting goods applications where high strength to weight ratios are requisite. Many of these materials use highly cross-linked epoxy resins as the matrix material. Unfortunately these resins have a low resistance to crack propagation and as a result research efforts have been directed towards reducing this tendency.The ability to measure microscopic displacements and calculate strain fields in the vicinity of a fracture crack tip under experimental conditions was needed in order to help predict the fracture resistance of various composite materials being tested. A technique was developed that made it possible to derive displacement measurements on a micrometer scale in the region of a crack tip from observations of epoxy-based composites being fractured using a tensile stage equipped scanning electron microscope (SEM). Samples were polished on the surface to be observed and sputter coated with 5 to 10 nanometers of either gold or 60:40 gold-palladium prior to mounting on the TS-2 tensile stage of a JEOL JSM-35CF. This instrument was also equipped with a Krisel beam interceptor, a beam current meter, a Tracor Northern TN-2000 x-ray analyzer and a TN-1310 digital beam control system. Using the digital beam and x-ray mapping capabilities a matrix of small dots was “written” onto the surface of the sample as shown in figure 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call