Abstract

The problem of free and forced transverse vibration of an orthotropic, composite, and isotropic thin square plates with uniformly distributed damping and simply supported boundary conditions has been solved, using a modal expansion technique. A load of the type P0cosΩt applied at the center of plate has been considered and the phase angle between the forcing function and the vibration response at the center, as a function of the forcing frequency and the damping parameter determined. This theoretical relationship together with the experimentally measured phase angle between the applied mechanical forcing and the resulting vibration response at various forcing frequencies was used to determine an equivalent viscous damping parameter. This technique has been found to be particularly useful for the measurement and comparison of the relative damping in composite or orthotropic materials. Also, a theoretical relation for the energy loss due to viscous damping in vibrating plates has been developed and the theoretical energy loss at various frequencies has been compared with the experimentally measured energy loss at the same frequencies. Typical damping results are presented for aluminum, steel and aluminum/graphite-fiber composite materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call