Abstract

Osmolytes are accumulated intracellularly to offset the effects of osmotic stress and protect cellular proteins against denaturation. Because different taxa accumulate different osmolytes, they can also be used as “dietary biomarkers” to study foraging. Potential osmolyte biomarkers include glycine betaine, trimethylamine N-oxide (TMAO), homarine, dimethylsulfoniopropionate (DMSP), and the osmolyte analog arsenobetaine (AsB). We present a liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay for the simultaneous measurement of these osmolytes in serum or plasma. Varying concentrations of osmolytes were added to serum and samples and extracted in 90% acetonitrile and 10% methanol containing 10 μM deuterated internal standards (D 9-glycine betaine, D 9-trimethylamine- N-oxide, 13C 2-arsenobetaine, D 6-DMSP, and D 4-homarine). Analytes were separated on a normal-phase modified silica column and detected using isotope dilution tandem mass spectrometry in multiple reaction monitoring (MRM) mode. The assay was linear for all six compounds ( r 2 values = 0.983–0.996). Recoveries were greater than 85%, and precision for within-batch coefficients of variation (CVs) were less than 8.2% and between-batch CVs were less than 6.1%. Limits of detection ranged from 0.02 to 0.12 μmol/L. LC–MS/MS is a simple method with high throughput for measuring low levels of osmolytes that are often present in biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.