Abstract

Electron contamination generated from interactions of x-rays with components in a medical linear accelerator's head can increase damage to skin and subcutaneous tissue during radiotherapy through increased dose deposition. Skin and subcutaneous dose from high energy x-rays can be reduced using magnetic fields to sweep the electron contamination away from the radiation treatment field. This work is aimed at investigating the magnetic fields generated by an improved magnetic deflector which utilizes Nd2Fe14B magnets. Magnetic field strengths generated by the deflector have been simulated using Vizimag 3.0 magnetic modelling software. The improved deflector has a more uniform magnetic field strength than its predecessor and is optimised to easily fit on a clinical linear accelerator. Experimental measurements of the magnetic field strengths produced have also been performed for comparison. Results show a relatively good match to Vizimag modelling in the central regions of the deflector. Reductions of skin and subcutaneous dose up to 34% of original values were seen for a 20 x 20 cm2 field at 6MV x-ray energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.