Abstract

We propose a measuring method of shear deformation in drape using three-dimensional (3D) scanning. We measured the local shear angles in fabric drape based on the Fabric Research Laboratories (FRL) drape test for woven fabrics using the proposed method. We investigate the effects of the relative positions of the node to the center grainlines that cross at the fabric center, and the bending and shear properties of fabric on the shear angles. To measure the local shear deformation, we obtained 3D drape shapes of four different fabrics with three to six nodes. We covered the obtained drape shapes using a fabric model composed of square cells that allowed shear deformation. By calculating the shear angles of the cells, we obtained the local shear deformation. We found that the FRL drape can be characterized by three areas, except for the flat areas of the support disks: (a) areas along the center grainlines with zero or small shear angles within 3°, which could result from single curvature bending; (b) areas in the bias directions with relatively large shear angles over 3°, which could result from double curvature bending; and (c) polygon edges connected by tangents of the support disk with relatively larger shear angles than their surroundings, which could result from both bending and shear deformation, such as folding and wrinkles. By investigating the relationships between areas with large shear angles and the bending rigidity/shear stiffness, we clarified that the bending rigidity indirectly affects the local shear deformation of drape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call