Abstract

The autoradiographic diffusible tracer technique for the measurement of local cerebral blood flow was originally designed for use with the radioactive, inert gas 131I-labeled trifluoroiodomethane and is applicable only with tracers that exhibit unrestricted diffusion through the blood-brain barrier. Because of the technical problems associated with the use of gaseous tracers, a suitable nonvolatile tracer has been sought. [14C] Antipyrine has been used previously and found to be unsuitable because of limitations in its diffusion through the blood-brain barrier. An analogue of [14C]antipyrine, iodo [14C]antipyrine, exhibits higher partition coefficients than [14C]antipyrine between nonpolar solvents and water and might, therefore, be expected to diffuse more freely through the barrier. Its use as the tracer in the local blood flow technique leads to values considerably above those obtained with [14C]antipyrine in the rat and cat and essentially the same as those obtained with the gas trifluoro[131I]iodomethane in the cat. Iodo[14C]antipyrine appears, therefore, to be a satisfactory nonvolatile tracer for the measurement of local cerebral blood flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.