Abstract

AimTo compare three-dimensional (3D) k-t sensitivity encoded (k-t SENSE) cine cardiovascular magnetic resonance (CMR), before and after contrast administration, against standard 2D imaging for the assessment of left ventricular volumes and mass.MethodTwenty-six subjects (14 volunteers, 12 patients) underwent multiple breathhold 2D balanced turbo-field echo cine CMR in addition to k-t SENSE accelerated 3D imaging (acceleration factor 5; 5× k-t SENSE), performed before and after administration of a high-relaxivity gadolinium-based contrast agent (Gadobutrolum). k-t acceleration factors of 7 and 10 were also assessed in six volunteers. Left ventricular end diastolic volume (EDV), end systolic volume (ESV), mass, and ejection fraction (EF) were calculated for each method.ResultsThere was at least moderate agreement between the EDV, ESV, mass and EF calculated by 2D and 3D 5× k-t SENSE methods before contrast (concordance coefficients 0.92, 0.95, 0.97, 0.92, respectively). Agreement improved following contrast (concordance coefficients 0.97, 0.99, 0.98, 0.93, respectively). The 3D method underestimated all parameters compared to 2D (mean bias pre-contrast 6.1 ml, 0.6 ml, 3.5 g, 2.0% respectively). 3D image quality scores were significantly poorer than 2D, showing a non-significant trend to improvement following contrast administration. Parameters derived with k-t acceleration factors of 7 and 10 showed poorer agreement with 2D values.ConclusionLeft ventricular volumes and mass are reliably assessed using 3D 5× k-t SENSE accelerated CMR. Contrast administration further improves agreement between 5× k-t SENSE and 2D-derived measurements. k-t acceleration factors greater than 5, though feasible, produce poorer agreement with 2D values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call