Abstract

The biomechanical analysis of stress and strain state of multilayered blood vessels has shown great importance in vascular pathology and physiology. However, there is a lack of method in measuring the mechanical property of each layer of a vascular sample without splitting up the wall. Here we develop a vascular inflation test method based on intravascular optical coherence tomography (IVOCT) imaging and inverse parametric estimation. We propose a three-step inverse parametric estimation method to solve the six constitutive parameters of the GOH models for the intima-media and adventitia of the coronaries simultaneously. A bilayer silicone vascular phantom inflation test and a virtual deformation test using finite element simulated data are conducted to evaluate the accuracy of the proposed method. The virtual deformation test demonstrates that the errors of the constitutive constants are less than 2.56% determined by the proposed inverse parametric estimation method. The stress-strain curves of a bilayer silicone vascular phantom obtained based on the parameters determined by the proposed method match well with those obtained by the uniaxial test. The proposed layer-specific vascular mechanical property measurement method provides a new experimental method for mechanical properties characterization of blood vessels. It also has the potential to be used for patient-specific mechanical properties estimation with IVOCT imaging in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call