Abstract

The isotope and hyperfine shifts for the Yb 1S0(6s2) → 3P1(6s6p) transition were determined with an acousto-optic modulator used to frequency shift part of a laser beam. The frequency-shifted and -unshifted laser beams were superimposed and excited an atomic beam. The laser was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each isotope generated two peaks in the spectrum separated by the acousto-optic shift, which permitted the frequency to be calibrated. This relatively simple method yields results that agree well with the most accurate existing data, which were obtained by measurement of frequency shifts with a Fabry–Perot étalon whose length was stabilized with a helium–neon laser locked to an iodine line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.