Abstract

Continuous fiber silicon carbide/titanium and aluminum matrix composite monolayers were tested by means of an indentation technique to measure the interfacial shear strength. Experimental results were interpreted using two analytical models and compared to results of other researches in order to evaluate the interface quality obtained with a vacuum plasma spray fabrication method. The separate contribution of chemical bond and friction to the mechanical shear strength of the fiber-matrix interface is discussed. For aluminum matrix composites, the interface strength is mainly controlled by frictional force. For titanium matrix composites, chemical bond plays a primary role. The vacuum plasma spray process used needs further optimization work, but it is a very promising fabrication method for continuous fiber reinforced metal matrix composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.