Abstract

The most frequent cause of failure for wireless, handheld, and portable consumer electronic products is an accidental drop to the ground. The impact may cause interfacial fracture of ball-grid-array solder joints. Existing metrology, such as ball shear and ball pull tests, cannot characterize the impact-induced high speed fracture failure. In this study, a mini-impact tester was utilized to measure the impact toughness and to characterize the impact reliability of both eutectic SnPb and SnAgCu solder joints. The annealing effect at 150 °C on the impact toughness was investigated, and the fractured surfaces were examined. The impact toughness of SnAgCu solder joints with the plating of electroless Ni/immersion Au (ENIG) became worse after annealing, decreasing from 10 or 11 mJ to 7 mJ. On the other hand, an improvement of the impact toughness of eutectic SnPb solder joints with ENIG was recorded after annealing, increasing from 6 or 10 to 15 mJ. Annealing has softened the bulk SnPb solder so that more plastic deformation can occur to absorb the impact energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call