Abstract

BackgroundThis study presents a new approach to measure and analyze the walking balance of humans by collecting motion sensor data in a smartphone.ObjectiveWe aimed to develop a mobile health (mHealth) app that can measure the walking movements of human individuals and analyze the differences in the walking movements of different individuals based on their health conditions. A smartphone’s motion sensors were used to measure the walking movements and analyze the rotation matrix data by calculating the variation of each xyz rotation, which shows the variables in walking-related movement data over time.MethodsData were collected from 3 participants, that is, 2 healthy individuals (1 female and 1 male) and 1 male with back pain. The participant with back pain injured his back during strenuous exercise but he did not have any issues in walking. The participants wore the smartphone in the middle of their waistline (as the center of gravity) while walking. They were instructed to walk straight at their own pace in an indoor hallway of a building. The walked a distance of approximately 400 feet. They walked for 2-3 minutes in a straight line and then returned to the starting location. A rotation vector in the smartphone, calculated by the rotation matrix, was used to measure the pitch, roll, and yaw angles of the human body while walking. Each xyz-rotation vector datum was recalculated to find the variation in each participant’s walking movement.ResultsThe male participant with back pain showed a diminished level of walking balance with a wider range of xyz-axis variations in the rotations compared to those of the healthy participants. The standard deviation in the xyz-axis of the male participant with back pain was larger than that of the healthy male participant. Moreover, the participant with back pain had the widest combined range of right-to-left and forward-to-backward motions. The healthy male participant showed smaller standard deviation while walking than the male participant with back pain and the female healthy participant, indicating that the healthy male participant had a well-balanced walking movement. The walking movement of the female healthy participant showed symmetry in the left-to-right (x-axis) and up-to-down (y-axis) motions in the x-y variations of rotation vectors, indicating that she had lesser bias in gait than the others.ConclusionsThis study shows that our mHealth app based on smartphone sensors and rotation vectors can measure the variations in the walking movements of different individuals. Further studies are needed to measure and compare walking movements by age, gender, as well as types of health problems or disease. This app can help in finding differences in gait in people with diseases that affect gait.

Highlights

  • Human balance is achieved and maintained by a complex set of human sensorimotor and musculoskeletal systems that control vision, proprioception, vestibular function, muscle contraction, and others

  • Our study introduces a new method to measure the walking balance by using motion sensors in a smartphone to determine the rotation vector

  • We developed an mobile health (mHealth) app to record and analyze the sensor output in the smartphone while participants walk

Read more

Summary

Introduction

Human balance is achieved and maintained by a complex set of human sensorimotor and musculoskeletal systems that control vision, proprioception, vestibular function, muscle contraction, and others. In previous mHealth research, smartphones have been used to support the diagnosis of diseases related to human balance, such as Parkinson disease [18] Those studies did not fully utilize smartphone sensors even though smartphones have multiple physical and software sensors. A smartphone’s motion sensors were used to measure the walking movements and analyze the rotation matrix data by calculating the variation of each xyz rotation, which shows the variables in walking-related movement data over time. The walking movement of the female healthy participant showed symmetry in the left-to-right (x-axis) and up-to-down (y-axis) motions in the x-y variations of rotation vectors, indicating that she had lesser bias in gait than the others. Conclusions: This study shows that our mHealth app based on smartphone sensors and rotation vectors can measure the variations in the walking movements of different individuals. This app can help in finding differences in gait in people with diseases that affect gait

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call