Abstract

The collection, processing, and electrochemical analysis of exhaled breath condensate (EBC) from healthy human and animal subjects is reported on. EBC is a biospecimen potentially rich in biomarkers of respiratory disease. The EBC pH was analyzed potentiometrically using a disposable polyaniline (PANI)-modified inkjet-printed (IJP) carbon electrode. Comparison measurements were performed using a commercial screen-printed carbon (SPC) electrode. The PANI-modified electrodes exhibited reproducible and near-Nernstian responses for pH values between 2 and 9 with slopes from -50 to -60 mV/dec. The PANI-modified IJP carbon electrode exhibited a faster response time and superior reproducibility to the modified SPC electrode. In proof-of-concept studies, the healthy human EBC pH was found to be 6.57 ± 0.09 and the healthy bovine EBC pH was 5.9 ± 0.2. All pH determined using the PANI-modified electrodes were in good agreement with the pH determined using a micro glass pH electrode. An RTube device was used to collect EBC from humans while a modified device was used to collect EBC from calves in the field. EBC volumes of 0.5-2 mL for 5-6 min of tidal breathing were collected from healthy animals. The pH of EBC from healthy calves (17 animals) depends on their age from 1 to 9 weeks with values ranging from 5.3 to 7.2. A distinct alkaline shift was observed for many animals around 20 days of age. The bovine EBC pH also depends on the ambient temperature and humidity at the time of collection. The results indicate that the PANI-modified IJP carbon electrodes outperform commercial SPC and provide reproducible and accurate measurement of pH across various biospecimen types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.