Abstract

In order to obtain the Hugoniot relation of unreacted JB-9014 explosive, one-dimensional plane impact experiments of the JB-9014 explosive were completed on a gun by using the reverse-impact method. The JB-9014 explosive sample was mounted on the front surface of the sabot as a flyer. The LiF window was taken as a device target. The sabot was accelerated to a certain speed by the gun and then the explosive sample impacted the LiF window. The impact velocity of the flyer and the particle velocity at the sample/window interface were measured by a photonic Doppler velocimetry (PDV). The Hugoniot data was obtained according to the conservation of the shock. The Hugoniot relationship of the JB-9014 explosive sample within the pressure range of 3.1−8.2 GPa was established by using the least square method. The results show that reverse-impact method has the characteristics of high accuracy and fast response time (<5 ns). In addition, the reverse-impact method can be used to detect the reaction degree of the JB-9014 explosive, which can be applied to judge whether the real Hugoniot data of the unreacted explosive is measured in the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.